Hexadecimal notation

December 2016

Hexadecimal notation

As binary numbers get longer and longer, a new base had to be introduced: hexadecimal numbering.
The hexadecimal number system counts using base 16, so after the first 10 digits come the first six letters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F
Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

An example

The number 27 (in base 10) is, in base 16: 1*161 + 11*160 = 1*161 + B*160
that is, 1B in base 16.

The number FB3 (in base 16) is, in base 10: F*162 + B*161 + 3*160 = 3840 + 176 + 3 = 4019

A byte is converted into hexadecimal by splitting it into two groups of 4 bits each, each of which corresponds to a hexadecimal digit.

2 A D 5
0010 1010 1101 0101

Related :


Notación hexadecimal
Notación hexadecimal
Système hexadécimal
Système hexadécimal
La base esadecimale
La base esadecimale
A base hexadecimal
A base hexadecimal
This document entitled « Hexadecimal notation » from CCM (ccm.net) is made available under the Creative Commons license. You can copy, modify copies of this page, under the conditions stipulated by the license, as this note appears clearly.